## Guess who?

Stare at the formula (Mathematica notation) and take a guess what it represents:

```{((-4 Sin[1/8 - 9 t] - 54/5 Sin[1/5 - 5 t] - 129/4 Sin[1/4 - t] +
76/7 Sin[2 t + 29/10] + 17/8 Sin[3 t + 1/9] +
243/22 Sin[4 t + 7/2] + 15/2 Sin[6 t + 19/6] +
11/2 Sin[7 t + 1/26] + 22/5 Sin[8 t + 19/6] +
10/3 Sin[10 t + 22/7] + 44/15 Sin[11 t + 1/7] +
24/7 Sin[12 t + 13/4] - 2843/7) UnitStep[39 Pi - t] UnitStep[
t - 35 Pi] + (-16/7 Sin[1/11 - 11 t] - 46/13 Sin[1/23 - 7 t] -
45/4 Sin[1/5 - 3 t] + 3 Sin[9 t] + 137/6 Sin[t + 1/18] +
52/7 Sin[2 t + 17/6] + 45/7 Sin[4 t + 13/4] +
37/8 Sin[5 t + 1/6] + 30/7 Sin[6 t + 100/33] +
23/7 Sin[8 t + 22/7] + 5/2 Sin[10 t + 19/6] +
11/5 Sin[12 t + 22/7] - 1601/5) UnitStep[35 Pi - t] UnitStep[
t - 31 Pi] + (-1/7 Sin[1/8 - 9 t] - 1/5 Sin[3/5 - 5 t] +
40/7 Sin[t + 85/21] + 7/2 Sin[2 t + 3/4] + Sin[3 t + 1/3] +
4/7 Sin[4 t + 11/4] + 1/4 Sin[6 t + 11/3] + 1/5 Sin[7 t + 1] +
1/4 Sin[8 t + 12/5] + 1/5 Sin[10 t + 37/12] +
1/38 Sin[11 t + 5/9] + 1/6 Sin[12 t + 13/4] - 2971/9) UnitStep[
31 Pi - t] UnitStep[
t - 27 Pi] + (-16/5 Sin[1/12 - 7 t] - 125/7 Sin[1/3 - t] +
24/5 Sin[5 t] + 15/8 Sin[11 t] + 24/7 Sin[2 t + 14/5] +
13/2 Sin[3 t + 14/15] + 23/3 Sin[4 t + 52/17] +
57/14 Sin[6 t + 19/6] + 7/3 Sin[8 t + 22/7] +
29/15 Sin[9 t + 1/10] + 17/7 Sin[10 t + 13/4] +
2 Sin[12 t + 25/8] - 2505/14) UnitStep[27 Pi - t] UnitStep[
t - 23 Pi] + (-1/11 Sin[3/4 - 12 t] - 246/35 Sin[5/7 - 2 t] +
3/8 Sin[11 t] + 11/5 Sin[t + 43/11] + 19/7 Sin[3 t + 2] +
16/3 Sin[4 t + 21/8] + 8/5 Sin[5 t + 9/10] +
11/12 Sin[6 t + 5/2] + 6/11 Sin[7 t + 26/25] +
2/5 Sin[8 t + 7/2] + 4/5 Sin[9 t + 1/8] +
1/4 Sin[10 t + 11/3] - 145) UnitStep[23 Pi - t] UnitStep[
t - 19 Pi] + (-6/5 Sin[16/17 - 79 t] - 4/7 Sin[3/4 - 76 t] -
12/13 Sin[13/9 - 64 t] - 1/3 Sin[12/11 - 57 t] -
7/5 Sin[3/5 - 54 t] - 13/8 Sin[1/2 - 48 t] -
4/3 Sin[6/5 - 42 t] - 13/6 Sin[6/7 - 41 t] -
1/4 Sin[14/9 - 40 t] - 13/9 Sin[17/11 - 39 t] -
Sin[3/2 - 36 t] - 26/7 Sin[11/7 - 31 t] -
5/2 Sin[1/3 - 20 t] - 219/20 Sin[3/2 - 11 t] -
191/5 Sin[6/5 - 9 t] - 17 Sin[1/5 - 8 t] -
149/7 Sin[6/7 - 7 t] + 6/5 Sin[66 t] + 3819/8 Sin[t + 40/9] +
472/5 Sin[2 t + 2/5] + 257/6 Sin[3 t + 13/5] +
115/8 Sin[4 t + 9/2] + 133/4 Sin[5 t + 5/7] +
23/4 Sin[6 t + 1/5] + 104/5 Sin[10 t + 9/7] +
86/9 Sin[12 t + 17/9] + 61/6 Sin[13 t + 19/9] +
13/2 Sin[14 t + 47/23] + 121/20 Sin[15 t + 22/5] +
30/7 Sin[16 t + 24/7] + 48/5 Sin[17 t + 39/11] +
62/9 Sin[18 t + 5/6] + 43/7 Sin[19 t + 1/29] +
19/10 Sin[21 t + 14/13] + 59/9 Sin[22 t + 20/7] +
40/7 Sin[23 t + 10/7] + 11/4 Sin[24 t + 13/7] +
17/4 Sin[25 t + 12/7] + 22/9 Sin[26 t + 55/18] +
34/5 Sin[27 t + 17/5] + 21/4 Sin[28 t + 17/7] +
69/17 Sin[29 t + 22/7] + 5/4 Sin[30 t + 7/6] +
5/3 Sin[32 t + 7/2] + 9/4 Sin[33 t + 49/16] +
14/3 Sin[34 t + 12/5] + 23/12 Sin[35 t + 11/7] +
7/6 Sin[37 t + 28/9] + 8/5 Sin[38 t + 1/15] +
3/7 Sin[43 t + 13/12] + 21/8 Sin[44 t + 7/5] +
3/4 Sin[45 t + 2/5] + 5/3 Sin[46 t + 47/16] +
14/5 Sin[47 t + 1/2] + 3/7 Sin[49 t + 44/15] +
13/9 Sin[50 t + 5/4] + 3/5 Sin[51 t + 15/7] +
3/5 Sin[52 t + 7/6] + 10/11 Sin[53 t + 32/7] +
7/6 Sin[55 t + 35/8] + Sin[56 t + 5/6] +
16/17 Sin[58 t + 18/7] + 3/4 Sin[59 t + 3/7] +
8/7 Sin[60 t + 31/9] + 3/5 Sin[61 t + 13/6] +
1/2 Sin[62 t + 33/17] + 1/5 Sin[63 t + 21/5] +
2/5 Sin[65 t + 30/7] + 7/8 Sin[67 t + 4/9] +
10/11 Sin[68 t + 11/6] + Sin[69 t + 25/7] +
10/11 Sin[70 t + 23/8] + 1/5 Sin[71 t + 12/7] +
3/7 Sin[72 t + 21/5] + 6/5 Sin[73 t + 33/7] +
2/5 Sin[74 t + 17/18] + 5/4 Sin[75 t + 4/5] +
10/7 Sin[77 t + 16/5] + 5/7 Sin[78 t + 4] +
2/5 Sin[80 t + 17/4] - 1393/5) UnitStep[19 Pi - t] UnitStep[
t - 15 Pi] + (-3/4 Sin[3/8 - 23 t] - 3/5 Sin[2/3 - 19 t] -
8/5 Sin[3/4 - 15 t] - 6/5 Sin[3/4 - 14 t] -
1069/10 Sin[2/3 - 3 t] + 202/5 Sin[2 t] +
207/4 Sin[t + 6/11] + 118/3 Sin[4 t + 23/11] +
51/5 Sin[5 t + 7/3] + 41/7 Sin[6 t + 11/3] +
83/12 Sin[7 t + 13/7] + 20/3 Sin[8 t + 10/7] +
11/2 Sin[9 t + 7/5] + 18/5 Sin[10 t + 17/6] +
3/2 Sin[11 t + 5/7] + 18/7 Sin[12 t + 4/7] +
13/5 Sin[13 t + 35/12] + 9/7 Sin[16 t + 1/2] +
27/14 Sin[17 t + 2/5] + 6/5 Sin[18 t + 7/4] +
8/5 Sin[20 t + 2/3] + 4/9 Sin[21 t + 1/6] +
1/2 Sin[22 t + 29/7] - 212/5) UnitStep[15 Pi - t] UnitStep[
t - 11 Pi] + (-1/3 Sin[1/2 - 12 t] - 5/8 Sin[11/7 - 10 t] -
1/2 Sin[6/5 - 8 t] - 9/2 Sin[4/7 - 3 t] - 424/9 Sin[3/5 - t] +
5/7 Sin[4 t] + 61/8 Sin[2 t + 1/9] + 5/3 Sin[5 t + 23/12] +
10/7 Sin[6 t + 13/6] + 2/3 Sin[7 t + 2] +
1/3 Sin[9 t + 16/5] + 1/3 Sin[11 t + 10/3] +
1/4 Sin[13 t + 11/5] + 2/5 Sin[14 t + 1/16] +
1/9 Sin[15 t + 11/7] + 1/4 Sin[16 t + 2/5] +
2/5 Sin[17 t + 38/13] + 277/2) UnitStep[11 Pi - t] UnitStep[
t - 7 Pi] + (-1/4 Sin[3/5 - 17 t] - 1/3 Sin[8/9 - 14 t] -
1/10 Sin[10/7 - 13 t] - 2/7 Sin[11/12 - 10 t] -
33/4 Sin[1/6 - 3 t] - 25/6 Sin[3/5 - 2 t] +
358/7 Sin[t + 19/5] + 8/3 Sin[4 t + 23/11] +
2/5 Sin[5 t + 11/5] + 3/4 Sin[6 t + 3/5] +
15/16 Sin[7 t + 1/6] + Sin[8 t + 23/9] + 2/5 Sin[9 t + 23/7] +
1/6 Sin[11 t + 19/7] + 2/7 Sin[12 t + 43/14] +
1/5 Sin[15 t + 5/6] + 1/17 Sin[18 t + 1/5] +
1/6 Sin[19 t + 13/9] + 2819/6) UnitStep[7 Pi - t] UnitStep[
t - 3 Pi] + (-4/7 Sin[5/6 - 17 t] - 11/6 Sin[1/2 - 14 t] -
11/5 Sin[6/5 - 13 t] - 3 Sin[1/18 - 10 t] -
183/7 Sin[1/16 - 4 t] - 1051/15 Sin[4/7 - 3 t] +
4673/19 Sin[t + 13/3] + 140/3 Sin[2 t + 8/7] +
194/9 Sin[5 t + 9/2] + 11/4 Sin[6 t + 76/25] +
71/10 Sin[7 t + 3/5] + 77/6 Sin[8 t + 10/9] +
5/3 Sin[9 t + 1/11] + 26/5 Sin[11 t + 2/7] +
34/7 Sin[12 t + 6/5] + 7/6 Sin[15 t + 9/5] +
18/7 Sin[16 t + 7/3] + 1292/5) UnitStep[3 Pi - t] UnitStep[
t + Pi]) UnitStep[
Sqrt[Sign[
Sin[t/2]]]], ((-17/16 Sin[1/4 - 8 t] - 2/5 Sin[7/6 - 7 t] -
109/18 Sin[9/8 - 3 t] + 287/16 Sin[t + 31/7] +
9/2 Sin[2 t + 1] + 39/5 Sin[4 t + 9/2] +
13/4 Sin[5 t + 27/7] + 3/4 Sin[6 t + 1/4] +
4/7 Sin[9 t + 14/3] + 2/3 Sin[10 t + 1/13] +
2/7 Sin[11 t + 17/4] + 1/2 Sin[12 t + 25/6] - 1216/9) UnitStep[
39 Pi - t] UnitStep[
t - 35 Pi] + (-6/5 Sin[1/6 - 9 t] - 71/5 Sin[3/8 - t] +
59/8 Sin[2 t + 28/11] + 11/3 Sin[3 t + 7/3] +
9/5 Sin[4 t + 7/2] + 5/2 Sin[5 t + 1/7] +
7/5 Sin[6 t + 13/4] + 5/3 Sin[7 t + 1/5] +
11/7 Sin[8 t + 19/5] + 20/19 Sin[10 t + 31/10] +
2/3 Sin[11 t + 1/15] + 4/5 Sin[12 t + 19/6] +
1591/30) UnitStep[35 Pi - t] UnitStep[
t - 31 Pi] + (-1/10 Sin[35/34 - 11 t] - 3/4 Sin[4/5 - 4 t] +
5/3 Sin[t + 53/13] + 11/2 Sin[2 t + 2] +
20/7 Sin[3 t + 11/5] + 2/5 Sin[5 t + 18/7] +
5/9 Sin[6 t + 4] + 1/3 Sin[7 t + 16/7] + 2/7 Sin[8 t + 27/7] +
1/4 Sin[9 t + 1] + 2/7 Sin[10 t + 17/4] +
1/8 Sin[12 t + 15/4] + 299/4) UnitStep[31 Pi - t] UnitStep[
t - 27 Pi] + (-5/4 Sin[1/3 - 10 t] - 7/4 Sin[1/28 - 8 t] -
41/21 Sin[1/8 - 6 t] + 58/3 Sin[t + 17/5] +
79/8 Sin[2 t + 1/6] + 25/2 Sin[3 t + 35/12] +
79/13 Sin[4 t + 6/5] + 16/7 Sin[5 t + 10/3] +
29/14 Sin[7 t + 24/7] + 7/4 Sin[9 t + 43/14] +
37/18 Sin[11 t + 13/4] + 5/4 Sin[12 t + 1/5] + 72/7) UnitStep[
27 Pi - t] UnitStep[
t - 23 Pi] + (-1/5 Sin[1/4 - 12 t] - 1/5 Sin[3/2 - 10 t] -
4/5 Sin[9/7 - 8 t] - 1/3 Sin[7/5 - t] + 55/9 Sin[2 t + 3/2] +
13/5 Sin[3 t + 33/8] + 19/4 Sin[4 t + 33/8] +
13/12 Sin[5 t + 19/7] + 3/2 Sin[6 t + 22/5] +
1/2 Sin[7 t + 12/5] + 5/9 Sin[9 t + 13/5] +
2/5 Sin[11 t + 7/4] + 125/4) UnitStep[23 Pi - t] UnitStep[
t - 19 Pi] + (-5/6 Sin[8/7 - 78 t] - 12/13 Sin[5/6 - 77 t] -
1/3 Sin[13/9 - 76 t] - 10/9 Sin[10/7 - 64 t] -
4/5 Sin[3/8 - 63 t] - 11/7 Sin[11/8 - 60 t] -
5/9 Sin[1/18 - 59 t] - 51/25 Sin[3/5 - 46 t] -
32/31 Sin[1 - 39 t] - 13/4 Sin[7/5 - 22 t] -
19/3 Sin[4/3 - 17 t] - 17/4 Sin[1/5 - 11 t] -
170/9 Sin[5/7 - 10 t] + 1/2 Sin[53 t] +
3616/15 Sin[t + 11/3] + 551/8 Sin[2 t + 14/3] +
283/5 Sin[3 t + 13/9] + 54/5 Sin[4 t + 17/4] +
296/5 Sin[5 t + 19/7] + 56/3 Sin[6 t + 1/4] +
361/12 Sin[7 t + 22/9] + 179/6 Sin[8 t + 4/5] +
169/7 Sin[9 t + 3/2] + 41/5 Sin[12 t + 21/5] +
49/8 Sin[13 t + 1/6] + 61/8 Sin[14 t + 13/4] +
99/14 Sin[15 t + 31/8] + 109/10 Sin[16 t + 7/4] +
5/3 Sin[18 t + 22/5] + 14/3 Sin[19 t + 29/8] +
7 Sin[20 t + 11/3] + 13/6 Sin[21 t + 6/5] +
26/9 Sin[23 t + 18/7] + Sin[24 t + 4/7] +
40/9 Sin[25 t + 9/7] + 4 Sin[26 t + 4/9] +
5/2 Sin[27 t + 22/5] + 27/8 Sin[28 t + 16/5] +
16/3 Sin[29 t + 9/4] + 2 Sin[30 t + 7/6] +
2 Sin[31 t + 17/9] + 16/7 Sin[32 t + 23/8] +
5/6 Sin[33 t + 8/3] + 10/9 Sin[34 t + 39/10] +
26/9 Sin[35 t + 28/9] + 12/7 Sin[36 t + 15/8] +
1/4 Sin[37 t + 19/5] + 7/6 Sin[38 t + 21/10] +
8/5 Sin[40 t + 40/13] + Sin[41 t + 4/7] +
15/7 Sin[42 t + 1/4] + 7/6 Sin[43 t + 3/2] +
5/9 Sin[44 t + 3] + 7/6 Sin[45 t + 15/14] +
17/7 Sin[47 t + 23/11] + 12/5 Sin[48 t + 3/2] +
5/7 Sin[49 t + 25/6] + 3/2 Sin[50 t + 15/4] +
2/5 Sin[51 t + 11/4] + 1/18 Sin[52 t + 65/32] +
11/12 Sin[54 t + 10/7] + Sin[55 t + 3] + 37/36 Sin[56 t + 4] +
17/11 Sin[57 t + 13/4] + 4/7 Sin[58 t + 16/7] +
14/15 Sin[61 t + 9/2] + 9/7 Sin[62 t + 5/4] +
3/7 Sin[65 t + 13/5] + 3/4 Sin[66 t + 5/4] +
11/10 Sin[67 t + 23/8] + 9/10 Sin[68 t + 30/7] +
2/5 Sin[69 t + 28/9] + Sin[70 t + 25/12] +
3/5 Sin[71 t + 9/8] + 2/5 Sin[72 t + 27/7] +
3/5 Sin[73 t + 3/5] + 1/3 Sin[74 t + 3/7] +
4/3 Sin[75 t + 11/3] + 4/3 Sin[79 t + 13/5] +
2/5 Sin[80 t + 27/7] - 134) UnitStep[19 Pi - t] UnitStep[
t - 15 Pi] + (-5/9 Sin[5/4 - 23 t] - 3/4 Sin[1/9 - 21 t] -
6/11 Sin[7/6 - 20 t] - 9/7 Sin[7/6 - 15 t] -
11/8 Sin[6/11 - 12 t] - 19/7 Sin[1/11 - 8 t] -
5 Sin[4/5 - 5 t] + 683/5 Sin[t + 7/5] +
37/2 Sin[2 t + 29/15] + 179/5 Sin[3 t + 3/2] +
9 Sin[4 t + 4] + 159/7 Sin[6 t + 31/9] +
61/6 Sin[7 t + 20/7] + 31/7 Sin[9 t + 9/4] +
11/4 Sin[10 t + 6/7] + 28/5 Sin[11 t + 7/4] +
7/2 Sin[13 t + 13/8] + 7/3 Sin[14 t + 4/9] +
11/7 Sin[16 t + 6/5] + 5/2 Sin[17 t + 5/4] +
3/4 Sin[18 t + 2/3] + 3/8 Sin[19 t + 7/4] +
2/5 Sin[22 t + 9/2] + 1081/3) UnitStep[15 Pi - t] UnitStep[
t - 11 Pi] + (-2/7 Sin[4/7 - 14 t] - 4/7 Sin[4/7 - 12 t] -
1/5 Sin[1/21 - 10 t] - 8/5 Sin[1/5 - 5 t] -
17/5 Sin[1/8 - 3 t] + 394/7 Sin[t + 23/5] +
5 Sin[2 t + 49/24] + 23/9 Sin[4 t + 7/5] +
1/16 Sin[6 t + 25/6] + 1/9 Sin[7 t + 17/9] +
5/8 Sin[8 t + 25/8] + 3/8 Sin[9 t + 7/3] +
1/13 Sin[11 t + 14/13] + 1/7 Sin[13 t + 67/17] +
1/3 Sin[15 t + 79/26] + 1/4 Sin[16 t + 1/4] +
1/5 Sin[17 t + 3] - 5529/10) UnitStep[11 Pi - t] UnitStep[
t - 7 Pi] + (-1/15 Sin[1/12 - 19 t] - 1/3 Sin[1/2 - 15 t] -
1/10 Sin[1/4 - 13 t] - 1/5 Sin[1 - 8 t] -
19/7 Sin[2/5 - 5 t] - 485/6 Sin[1/2 - t] + 1/7 Sin[11 t] +
38/13 Sin[2 t + 22/5] + 22/9 Sin[3 t + 12/5] +
16/7 Sin[4 t + 3/5] + 17/9 Sin[6 t + 5/2] +
5/6 Sin[7 t + 16/11] + 1/4 Sin[9 t + 22/5] +
3/4 Sin[10 t + 8/3] + 1/2 Sin[12 t + 41/9] +
1/5 Sin[14 t + 9/4] + 1/6 Sin[16 t + 31/8] +
1/4 Sin[17 t + 5/9] + 1/5 Sin[18 t + 9/4] - 6265/12) UnitStep[
7 Pi - t] UnitStep[
t - 3 Pi] + (-21/8 Sin[7/5 - 14 t] - 5/4 Sin[4/7 - 9 t] -
55/8 Sin[4/5 - 8 t] - 3/2 Sin[3/5 - 7 t] -
28/9 Sin[26/25 - 6 t] + 4/3 Sin[12 t] + 596/3 Sin[t + 13/5] +
132/5 Sin[2 t + 14/3] + 28 Sin[3 t + 3/5] +
25/3 Sin[4 t + 1/2] + 33/7 Sin[5 t + 13/5] +
8/5 Sin[10 t + 23/5] + 2/3 Sin[11 t + 11/5] +
5/9 Sin[13 t + 23/6] + 2/7 Sin[15 t + 3/4] +
4/7 Sin[16 t + 4/3] + 2/5 Sin[17 t + 15/7] - 1753/4) UnitStep[
3 Pi - t] UnitStep[t + Pi]) UnitStep[Sqrt[Sign[Sin[t/2]]]]}

ParametricPlot[%, {t, 0, 40 Pi}]
```

Got it? Right…

Taken from Wolfram Alpha.